
Interaction between birds and Wind turbines

Group 4:
Naseera Moosa
Peter Popoola

Mmamapudi Kubjane
Supervised by Professor David Mason

Mathematics in Industry Study Group Workshop 2016

January 9, 2016

Group 4: Naseera Moosa Peter Popoola Mmamapudi Kubjane Supervised by Professor David Mason ( MISG 2016)Short title January 9, 2016 1 / 31



Overview

1 Bird Population Dynamics
Mathematical formulation
Analytical and Numerical solution
Numerical Analysis

2 Wake and wind turbine dynamics

3 Interpretation of results

Group 4: Naseera Moosa Peter Popoola Mmamapudi Kubjane Supervised by Professor David Mason ( MISG 2016)Short title January 9, 2016 2 / 31



Bird Population Dynamics

dP

dt
= rP

(
1− p

k

)(p
α
− 1
)
− σP

P = population (number of birds)
t = time
r = net growth rate
k = carrying capacity
α = Allee effect (minimum pop before extinction)
σ = probability of a hit by one bird per unit time
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The collision risk area

Describing the first row of wind turbines
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Mathematical model of σ

σ =
Area of wind turbines

Total area
=
πa2

hd

a = length of blade
d = distance between 2 turbines in first row
h = β L = maximum height birds fly above ground
β > 0 is the height parameter
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Equilibrium points

rP

(
1− P

k

)(
P

α

)
− σP = 0

Approximate solutions

P = 0

P+ = k −
(

αk

k − α

)
σ

r
+ O

(σ
r

)2

P− = α +

(
αk

k − α

)
σ

r
+ O

(σ
r

)2
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Graph of dP
dt against P depicting α and k bounds

Shows that, absent of sigma, the population change rate is bounded by
Allee effect and Carrying Capacity, k
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Graph of dP
dt against P showing effect of varying β

Shows the effect on the population change rate with β increasing in steps
of 5 from 5 to 20
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Graph of dP
dt against P showing effect of σ on α and k

Shows the impact of increasing values of sigma from 0.01 to 0.05 in steps
of 0.01 on the Allee effect and Carrying capacity
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Graph of dP
dt against P showing effect of varying growth

rate

Shows the impact of increasing net growth rate on Population change rate
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Dynamics of the wake the wind turbine

Consider a turbulent wake with radial component of velocity

v̄r = 0 + v̄r (r , z)

and the velocity in the z component (horizontal direction) is

v̄z = U − w̄(r , z)

U = incoming wind velocity
w(r , z) = the velocity deficit
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v̄z and v̄r = the time average over fluctuation of vz and vr respectively.
We assume that the fluid flow (the wind) is axisymmetric i.e.

∂

∂θ
= 0

v̄θ = 0
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Next, we manipulate the Navier-Stokes equations with a boundary layer
approximation to retrieve the equation for the upper half of a wake:

v̄r
∂v̄r
∂r

+ v̄z
∂v̄z
∂z

=
1

r

∂

∂r

[
r

(
ν + l2(z)

∂v̄z
∂r

)]
= 0 (1)

where ν = kinematic viscosity, a property of the fluid
l(z) = Prandtl’s mixing length
l2(z)∂v̄z∂r = kinematic eddy viscosity due to the turbulence in the wake.
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Equation of conservation of mass, for an incompressible fluid:

∂

∂r
(r v̄r ) + r

∂v̄z
∂z

= 0 (2)

Equations 1 and 2 are substituted into Equation 3 and 4. We make the
following assumptions:
1) We know vr = small therefore, second order terms like v̄r

∂v̄r
∂r can be

ignored because they too are small
2) We choose l(z) = l0z

n where n is not specified
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Equation 1 simplifies to:

U
∂w

∂z
=
ν

r

∂

∂r

(
r
∂w

∂r

)
− l20z

2n 1

r

∂

∂r

[
r

(
∂w

∂r

)2
]

(3)

and Equation 2 simplifies to:

r
∂w

∂r
+ vr − r

∂w

∂z
= 0 (4)

Equations 3 and 4 are PDEs that are difficult to solve. To reduce them to
ODEs, we consider the scaling transformation under which the PDE is
invariant:

r̄ = λar

z̄ = λbz

w̄ = λcw

v̄r = λdvr
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Four unknowns from the scaling transformation, we have three equations
for from which we can calculate them from one unknown:

b = 2a

c = a(1− 4n)

d = −4na

Suppose that:

w = f (r , z)is some function that is a solution of Equation 3

then
w̄ = f (r̄ , z̄)is also a solution (5)
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The characteristic curves for the first order linear PDEs, reduce to:

f = z
c
b F (

r

zα
)

g(r , z) = z
d
bG (

r

zα
)
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In summary, the similarity solutions are of the form:

w(r , z) = z
1
2

(1−4n)F (ξ) (6)

v̄r = z−2nG (ξ) where ξ =
r

z
1
2

(7)
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We get 2 ODEs:

l20
d

dξ

[
ξ(
dF

dξ
)2

]
− r

d

dξ

[
ξ
dF

dξ

]
+

1

2
U

[
(1− 4n)ξF − ξ2 dF

dξ

]
= 0 (8)

d

dξ
(ξG ) +

1

2

[
ξ2 dF

dξ
− (1− 4n)ξF (ξ)

]
= 0 (9)
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The boundary conditions:
at r = 0
∂w
∂r (0, z) = 0
v̄r (0, z) = 0
The boundary conditions:
at r = b(z)
w (b(z), z) = 0
∂w
∂r (b(z), z) = 0

(the eddy viscosity vanishes so no turbulence)
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Integrating the Equation 3 wrt r∫ b(z)

0
rw(r , z)dr = constant that is INDEPENDENT of z

The total momentum deficit in the wake is equal to the drag on the air
due to the turbine. Using the above equation:

D = 2πρ

∫ b(z)

0
rw(r , z)dr = constant that is INDEPENDENT of z (10)

D is a conserved quantity
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We have

n =
3

4

b(z) = b0

√
z

the boundary resembles a square root function if the boundary is finite

D = 2πρ

∫ b(z)

0
ξF (ξ)dξ which is a conserved quantity
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F (ξ) =

[
B − 1

3

(
U

2

) 1
2 1

l0
ξ

3
2

]2

where B is the constant of integration

(11)
When r → ∞, ξ → ∞, F → ∞ making w → ∞ which is not possible.
Therefore, the boundary of the wake is indeed finite. Therefore:

F (b0) = 0
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We find the equations for F (ξ) and G (ξ):

F (ξ) =
1

18

U

l20

[
b

3
2
0 − ξ

3
2
0

]2

(12)

G (ξ) = − Uξ

36l20

[
b

3
2
0 − ξ

3
2
0

]2

(13)
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The value for b0

b0 =

[
70 l50 D

πρU

] 1
5

(14)

vz(r , z) = U − 1

z

U

18 l20

[
b

3
2
0 − ξ

3
2
0

]2

= U

[
1− 1

z 18 l20

[
b

3
2
0 − ξ

3
2
0

]2
]

where the square bracket is the factor by which the speed decreases as it
approaches the next turbine
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Lastly, we check the sign of vr (r , z):

vr (r , z) =
1

z
3
2

G (ξ)

= − 1

z
3
2

[
Uξ

36 l20

[
b

3
2
0 − ξ

3
2
0

]2
]

which is negative
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Interpretation of results

First model in literature for bird population dynamics factoring in effects
of wind turbines:

dP

dt
= rP

(
1− p

k

)(p
α
− 1
)
− σP

σ =
Area of wind turbines

Total area
=
πa2

hd
(15)

Derived velocity decrease factor between turbines in downstream direction:

vz(r , z) = U

[
1− 1

z 18 l20

[
b

3
2
0 − ξ

3
2
0

]2
]

where the square bracket is the factor by which the speed decreases as it
approaches the next turbine
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Derived equation for wake boundary:

r = b0

√
z

=

[
70 l50 D

πρU

] 1
5 √

z

Analytically proved that alpha increases and k reduces with an increase in
sigma:
Analytically proved that z decreases at a high rate, depicting the area
around the turbine where the wake has effect on the flying birds:

vr (r , z) = − U

36 l20

[
r

z2

[
b

3
2 − ξ

3
2

]2
]
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Recommendations for Future Research

Inclusion of avoidance and environmental factors in population dynamics
model
Find out turbine placements in the downstream direction wrt distance
between them which optimizes generated power and minimizes bird
casualties.
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Thank you. Questions?
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